1.基本环境
编译器:PyCharm 2019.1.2
虚拟环境:Anaconda虚拟环境
scikit-learn版本: 0.22.2.post1
2.数据归一化
1 2 3 4 5 6
| from sklearn.preprocessing import StandardScaler
scaler = StandardScaler() x_train_data = scaler.fit_transform(x_train_data) x_test_data = scaler.transform(x_test_data)
|
3.模型调参
1 2 3 4 5 6 7 8 9 10 11 12 13
| from sklearn.model_selection import GridSearchCV
svc_model = svm.SVC(kernel='rbf') param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]} grid_search = GridSearchCV(svc_model, param_grid, n_jobs=8, verbose=1) grid_search.fit(x_train_data, y_train_data.ravel()) best_parameters = grid_search.best_estimator_.get_params() print("cv results are" % grid_search.best_params_, grid_search.cv_results_) print("best parameters are" % grid_search.best_params_, grid_search.best_params_) print("best score are" % grid_search.best_params_, grid_search.best_score_)
svm_model = svm.SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'])
|